The Erd } Os - Ko - Rado Bound of the Functionlatticechristian Beyuniversit at Rostockfachbereich Mathematik

نویسنده

  • CHRISTIAN BEY
چکیده

We answer the following question: When does a k-uniform family generated by some rank t element in the function lattice have maximum size among all k-uniform t-intersecting families?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incomparability and Intersection Properties of Boolean Interval Lattices and Chain Posets

In a canonical way we establish an AZ{identity (see [9]) and its consequences, the LYM{inequality and the Sperner{property, for the Boolean interval lattice. Further, the Bollobas{inequality for the Boolean interval lattice turns out to be just the LYM{ inequality for the Boolean lattice. We also present an Intersection Theorem for this lattice. Perhaps more surprising is that by our approach t...

متن کامل

An Erd\H{o}s--Ko--Rado theorem for matchings in the complete graph

We consider the following higher-order analog of the Erdős–Ko–Rado theorem. For positive integers r and n with r ≤ n, let Mn be the family of all matchings of size r in the complete graph K2n. For any edge e ∈ E(K2n), the family Mn(e), which consists of all sets in Mn containing e is called the star centered at e. We prove that if r < n and A ⊆ Mn is an intersecting family of matchings, then |A...

متن کامل

SERIE A | MATHEMATIK The local density of triangle-free graphs

How dense can every induced subgraph of bnc vertices (0 < 1) of a triangle-free graph of order n be? Tools will be developed to estimate the local density of graphs, based on the spectrum of the graph and on a fractional viewpoint. These tools are used to refute a conjecture of Erd} os et.al. about the local density of triangle-free graphs for a certain range of , by estimating the local densit...

متن کامل

On the maximum size of Erdős-Ko-Rado sets in $$H(2d+1, q^2)$$

Erdős-Ko-Rado sets in finite classical polar spaces are sets of generators that intersect pairwise non-trivially. We improve the known upper bound for Erdős-Ko-Rado sets in H(2d + 1, q) for d > 2 and d even from approximately q +d to q 2+1.

متن کامل

A generalization of the Erdős-Ko-Rado Theorem

In this note, we investigate some properties of local Kneser graphs defined in [8]. In this regard, as a generalization of the Erdös-Ko-Rado theorem, we characterize the maximum independent sets of local Kneser graphs. Next, we present an upper bound for their chromatic number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998